

International Journal of Medicinal Chemistry & Analysis e ISSN 2249 – 7587 Print ISSN 2249 - 7595

www.ijmca.com

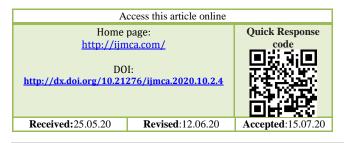
Research Article

STRUCTURE BASED MOLECULAR DOCKING ANALYSIS OF QUINAZOLINE DERIVATIVES AGAINST Mycobacterium tuberculosis

Vismaya KV* and Vijayakumar B

Department of Pharmaceutical Chemistry, Grace College of Pharmacy, Palakkad-678004, Kerala, India.

ABSTRACT


Tuberculosis remains a worldwide public health problem despite the fact that the causative organisms was discovered more than 100 years ago and highly effective drugs and vaccines are available making tuberculosis a preventable and curable disease. In this paper we report the molecular docking studies of 30 quinazoline derivatives having antitubercular activity. The derived compounds were analyzed for drug likeliness based on the Lipinski's rule of Five and docking study was performed between receptor and ligands by Autodock vina with PyRx and visualized by Biovia Discovery studio 2020 client. Docking studies have shown that the quinazoline derivatives interacts and bind efficiently with 1P44 (enoyl-acyl carrier protein reductase (InhA)) enzyme which resulted in antitubercular activity.

Keywords: Tuberculosis, Drugs, Quinazoline, Antitubercular activity, Molecular docking, Enoyl-acyl carrier protein reductase.

Corresponding Author: - K.V.Vismaya Email: - vismayakv50@gmail.com

INTRODUCTION

Tuberculosis is a specific infectious disease. It is caused by *M. tuberculosis*. The disease primarily affects the lungs and causes tuberculosis of the lungs called as pulmonary tuberculosis. It can also affect intestine, meninges, bones and joints, lymph glands, skin and other tissues of the body. The disease is usually chronic with varying symptoms. The disease also affects animals like cattle; this is known as "bovine tuberculosis", which may sometimes communicate to man. Pulmonary tuberculosis, the most important form of tuberculosis which affects man, will be considered in this paper [1].According to global tuberculosis report, in 10 million estimated cases of TB, only 6.4 million cases were notified. There is a gap of 3.6 million cases between estimated and reported cases.

This is due to underreporting or underdiagnosis of the cases. The 6.4 million notified cases include 5.8 million men, 3.2 million women and 1.0 million children. Overall 90% were adults (>15 years) cases. The male:female ratio was 1.7:1. About 464,633 TB cases were among HIV-positive people, of these 84% were on antiretroviral treatment [2].Tuberculosis kills more women in reproductive age group than all maternal mortality combined. Nearly one-third of female infertility in India is caused by tuberculosis [3].

The development of effective treatment for tuberculosis has been one of the most significant advances during this century. The objective of the treatment is curethat is, the elimination of both the fast and slowly multiplying bacilli from the patient's body. Incomplete treatment puts the patients at risk of relapse and the development of bacterial resistance and, importantly, the community at the risk of infection with resistant organisms [4].

Quinazolines and condensed quinazolines have attracted the attention of medical chemists due to their biological properties. Among the biological activities exhibited by quinazoline derivatives, mostly the antimicrobial activities of 2, 3-substituted quinazoline are interesting [5]. Medicinally many substituted quinazoline derivatives are acknowledged to possess a wide range of bioactivities as anti-malarial, anti-cancer, antimicrobial, antifungal, antiviral, anti-protozoan, anti-inflammatory, diuretic, muscle relaxant, anti-tubercular, CNS depressant, anti-convulsant, acaricidal, weedicide, and many other functional materials [6].

In this paper, we are reporting the docking analysis of quinazoline derivatives against enoyl-acyl carrier protein reductase (InhA) of *M. tuberculosis*, which stimulate the NADH-dependent reduction of the trans double bond between positions C2 and C3 of fatty acyl substrates. In addition, InhA prefers fatty acetyl substrates C16 or higher as it is a member of the Mycobacterial FAS-II system [7]. The docking was performed to predict the binding affinity of the synthesized quinazoline derivatives against this enzyme. This will help to identify if there exists a relation between the binding affinity to InhA for quinazoline based antitubercular drugs. The docking can also generate useful information for further studies on the structure-based drug design of quinazolinebased antitubercular drugs. The reference drug used in this study is Bedaquiline [8].

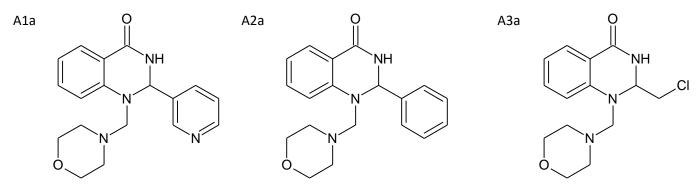
MATERIALS AND METHODS Materials

In present study, various biological databases, bioinformatics tools and software were used. The software used and their utilities are presented in Table 1.

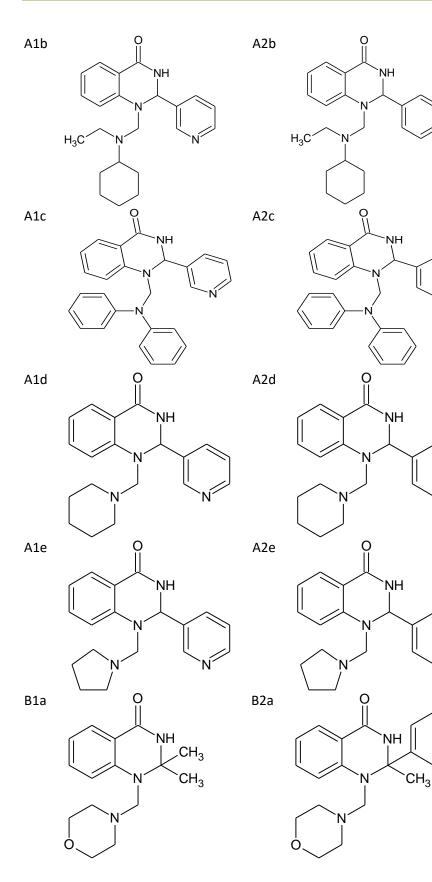
Methods

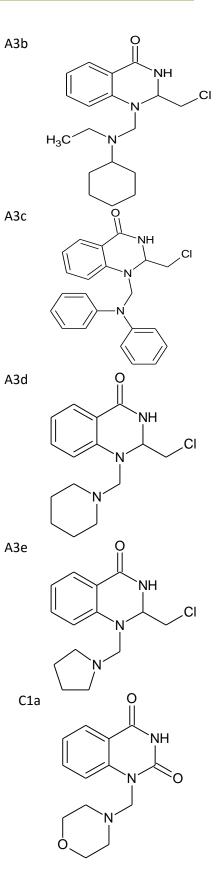
Protein preparation

Protein (pdb) ID, 1P44 was downloaded from protein data bank available at www.pdb.org. and downloaded the file in PDB format. 1P44 protein is Enoyl-[acyl-carrier-protein] reductase [NADH] with 6 chains having 268 residues. Its synonym is NADHdependent enoyl-acp reductase. Active site was predicted by using Active Site Prediction Server- SCFBio from http://www.scfbio-iitd.res.in/dock/ActiveSite.jsp. Protein was then energy minimized by using MOE software.


Structural assessment of the protein

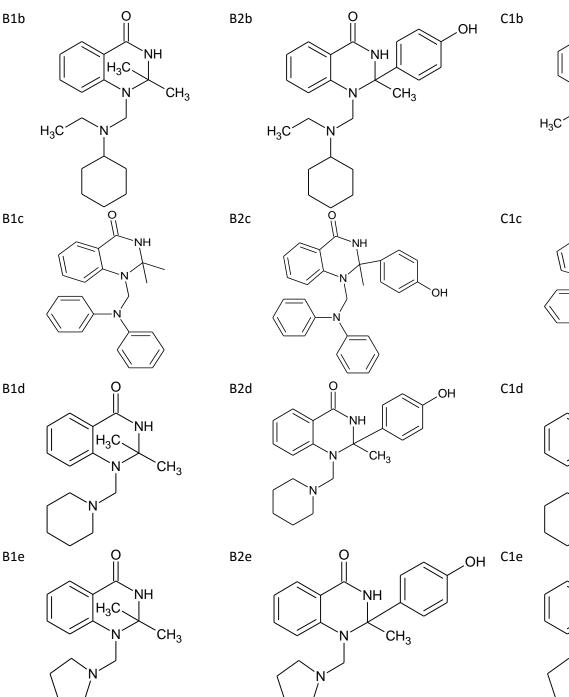
Structural assessment of protein by generating Ramchandran Plot using Pdbsum database. Ramachandran plots for all residue types, Chi1-Chi2 plots, Mainchain parameters, Side-chain parameters, Residue properties, Main chain bond length, Main-chain bond angles, RMS distances from planarity and distorted geometry were analyzed for input atom only.


Preparation of ligands

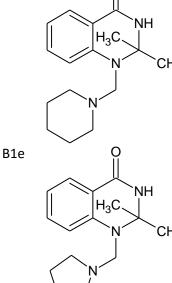

About 30 quinazoline derivatives were derived and docked with the protein PDB ID 1P44. 2D structures of ligands were drawn in ChemDraw Ultra 8.0. and converted to its 3D structure by Chem3D Pro 8.0. Energy minimization of ligands was carried out in Chem3D Pro 8.0 itself and saves in PDB format.

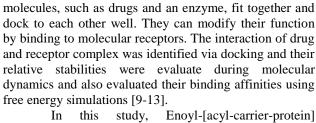
S.No	Softwares	Utility				
1.	ChemDraw Ultra 8.0.	Software to draw the 2D structures of ligands				
2.	Chem3D Pro 8.0	Software to generate 3D model and energy minimization				
		of ligands				
3.	MOE (Molecular Operating Environment)	Software for energy minimization of protein by selecting				
		active chain				
4.	PYMOL molecular graphic system	Chemical visualization of protein for docking				
5.	PyRx-Virtual screening tool	Autodock vina software				
6.	Discovery Studio	Finding active site of protein and Docking result analysis				

.OH


NH

ЧΙ


NH


NH

O

B1c

various scoring functions. It explores ways in which two

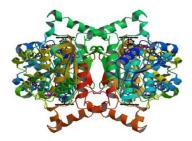
Docking allows screening a database of compounds and calculating the strongest binders based on

P, molecular weight, number of hydrogen donors, number of hydrogen acceptors and Molar refractivity. Based on

these properties the compounds which adhere to

Lipinski's rule were selected for the study.

The drug likeness values were calculated by log


reductase [NADH] (1P44) as receptor and quinazoline

Docking studies

Lipinski's rule of five

derivatives were taken as ligands. Docking study was performed between receptor and ligands by using Autodock vina with PyRx. The structure of 1P44 (Fig 1), an essential target for novel quinazoline based antitubercular drugs. All water molecules and ligands were removed from the protein for docking studies. Then visualization and the docking analysis of the proposed compounds with 1P44 was carried by using Biovia Discovery studio 2020 client.

Fig 1. 3D structure of protein (PBD ID:1P44)

Table 2. Lipinski's properties of the compound

RESULT AND DISCUSSION

Structural assessment of the protein

The Ramchandran plot analysis is presented in Fig 2. Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms a good quality model would be expected to have over 90% in the most favoured regions [A,B,L]. The plot shows that 83.1% is most favoured region with 1122 residues. 14.9% is additional allowed region [a,b,l,p] with 201 residues. 1.3% is generously allowed regions [~a,~b,~l,~p] with 17 residues and 0.7% is Disallowed regions [XX] with 10 residues.

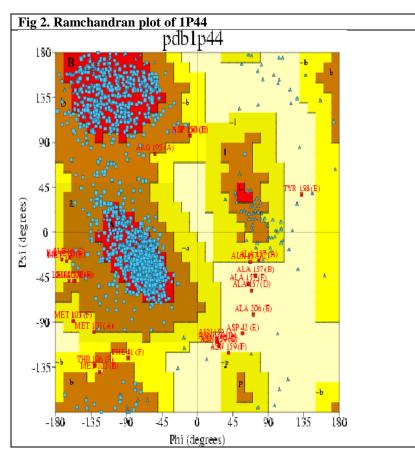
Lipinski's rule of five

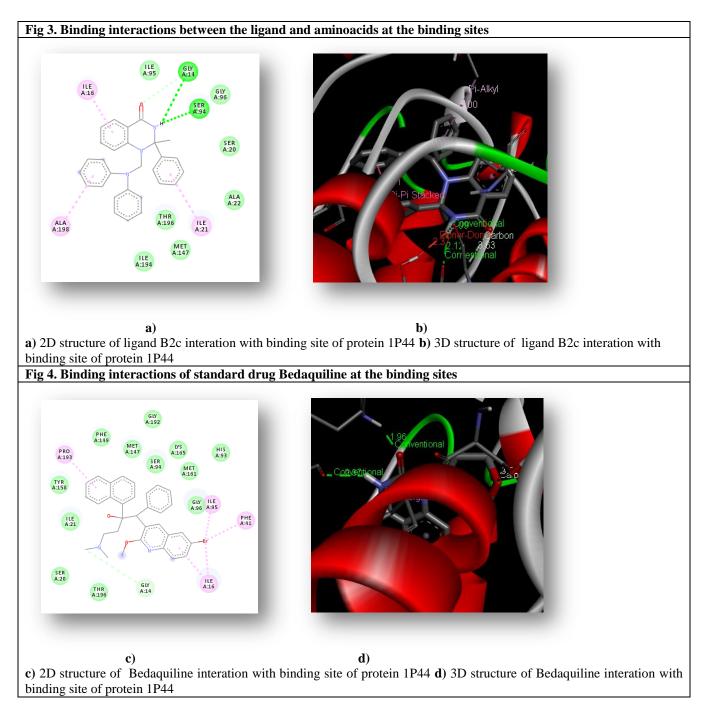
The designed quinazoline derivatives were passed in Lipinski's rule which consists of following parameters such as Molecular mass less than 500 Dalton, logP less than 5, Hydrogen bond donors Less than 5, Hydrogen bond acceptors Less than 10 and Molar refractivity should be between 40-130 when compared to the reference drug Bedaquiline (Table.2).

S.No	Compd Code	Mol.wt (g/mol)	LOG P	H-Donor	H-Acceptor	MR
3.110	Compa Code	<500	<5	<5	<10	40-130
1	Ala	324.38	1.24	1	4	100.87
2	Alb	364.48	3.68	1	3	115.09
3	Alc	406.48	4.79	1	2	129.82
4	Ald	332.40	2.30	1	3	104.59
5	Ale	308.38	1.80	1	3	99.78
6	A2a	323.39	2.48	1	3	103.07
7	A2b	363.50	4.91	1	2	117.30
8	A2c	405.49	4.86	1	1	132.03
9	A2d	321.42	3.54	1	2	106.79
10	A2e	307.39	3.04	1	2	101.99
11	A3a	295.76	1.49	1	3	88.19
12	A3b	335.87	3.92	1	2	102.42
13	A3c	377.87	3.67	1	1	117.14
14	A3d	293.79	2.55	1	2	91.91
15	A3e	279.77	2.05	1	2	87.10
16	B1a	275.35	0.59	1	3	88.24
17	B1b	315.45	3.02	1	2	102.46
18	B1c	357.45	4.14	1	1	117.9
19	B1d	273.37	1.65	1	2	91.96
20	Ble	259.35	1.15	1	2	87.15
21	B2a	337.42	2.92	1	3	107.76
22	B2b	377.52	4.58	1	2	121.90
23	B2c	419.52	5.40	1	1	136.72
24	B2d	335.44	3.99	1	2	111.48
25	B2e	321.42	3.48	1	2	106.68
26	C1a	261.28	0.56	1	4	75.10
27	C1b	301.28	3.0	1	3	89.93
28	C1c	343.38	4.11	1	2	104.06
29	C1d	259.30	1.62	1	3	78.82
30	Cle	245.28	1.12	1	3	74.02

Cod	Auto	H-Bonds	ling affinities of Vander	Pi-sigma	Alkyl	Pi-alkyl	Pi-cation	Pi-sulphur	RMSD
e	dock		waals forces						10102
	vina								
	PyRx	Residues	Residues	Residues	Residues	Residues	Residues	Residues	Residues
Ala	-8.0	ILE A : 21	THR A : 196	ILE A:21					0.0
		SER A :94	SER A : 19						
			ILE A : 194						
			ALA A : 191						
			GLY A : 192						
			PRO A :193						
			ASP A : 148						
			PHE A : 149						
			GLY A : 96						
			LYS A : 196						
			MET A :161						
			GLY A : 14						
			ALA A : 22						
4.11	7.4	CLVL OC	SER A : 20	N.E. 4. 01					0.0
A1b	-7.4	GLY A :96 SER A : 94	ILE A : 16	ILE A:21	PRO A : 102	PHE A :			0.0
		SEK A : 94	ILE A : 95 MET A :161		193	149 TYR A :			
			LYS A : 165			158 ISB			
			MET A :199			138			
			TYR A : 158						
			PHE A : 149						
			ASP A : 148						
			THR A : 196						
			SER A : 19						
			SER A : 20						
			ILE A : 16						
A1c	-9.2	GLY A :96	ILE A : 194	ILE A:16		ILE A:21			0.0
		SER A : 94	PRO A :193			ALA A :			
			MET A :103			198			
			ALA A : 22			MET A :			
			SER A :20			199			
			GLY A : 14						
A 1 1	0.0		ILE A : 95			ИБ А О1			0.0
A1d	-8.0	SER A : 94	SER A : 19 SER A : 20			ILE A:21			0.0
			PRO A :193						
			GLY A : 192						
			PHE A : 149						
			ASP A : 148						
			MET A :147						
			LYS A : 165						
			MET A :161						
			GLY A : 96						
			ILE A : 95						
			GLY A : 14						
Ale	-7.5	GLY A :96	SER A : 19		MET	ILE A:21			0.0
			SER A : 20		A:147				
			ILE A : 16						
			GLY A : 14						
			ILE A : 95						
			MET A :161						

 Table 3. Interaction and binding affinities of designed quinazoline derivatives


				r	r	r		
			LYS A : 165					
			ASP A : 148					
			PHE A : 149					
			GLY A : 192					
			PRO A :193					
			ILE A : 194					
			THR A : 196					
A2a	-7.7	ILE A : 21	THR A :1 96			ILE A:16		0.0
		ALA A :22	MET A :147			ILE A:21		
		GLY A :14	LYS A : 165					
			MET A :161					
			GLY A : 96					
			PHE A : 41					
			ILE A : 95					
1.01			SER A : 94	HE 4 01				0.0
A2b	-7.5	SER A : 94	ALA A : 22	ILE A:21	PRO A :	TYR A :		0.0
			GLY A : 14		193	158 DUE A .		
			ILE A : 16			PHE A : 149		
			SER A : 20 THR A : 196			149		
			ILE A : 196					
			ASP A : 148					
			MET A :199					
			LYS A : 165					
			MET A :147					
			MET A :147 MET A :161					
			GLY A : 96					
A2c	-9.1	ILE A : 95	ILE A : 194	ILE A:16		ILE A:21		0.0
1120	2.1	GLY A :96	PRO A :193	122 M.10		MET A :		0.0
		SER A : 94	MET A :147			199		
			SER A : 20			ALA A :		
			ALA A : 22			198		
			GLY A : 14					
A2d	-8.0		ALA A: 198	THR A :	MET A:	PROA:		0.0
			ILE A : 194	196	147	193		
			TYR A : 158			PHE A :		
			MET A :199			149		
			LYS A : 165					
			ASP A : 148					
			ILE A : 21					
			SER A : 94					
			GLY A : 14					
			SER A : 20					
			ILE A : 16					
A2e	-7.9	SER A:194	SER A : 19		ILE A:21	MET A :		0.0
			THR A : 196			147		
			ILE A : 194					
			PRO A :193					
			GLY A : 192					
			PHE A : 149					
			ASP A : 148					
			MET A :161					
			GLY A : 96					
			LYS A : 165					
			ILE A : 95					
			GLY A : 14					


			SER A : 20					
			ASP A :					
A3a	-4.9	SER A :94	GLY A:14		ILE A:21	MET		0.0
1154	1.2	SERVICE IN 191	ILE A:16		1227	A:147		0.0
			SER A:20			11.11/		
			THR A:196					
			ILE A:194					
			ASP A:148					
			PHE A:149					
			PRO A:193					
			LYS A:165					
A3b	-6.8	SER A:94	ILE A:16	ILE A:21	PRO			0.0
		ILE A:21	GLY A:14		A:193			
		PRO A:193	SER A:20					
			SER A:19					
			THR A:196					
			MET A:147					
			ASP A:148					
			LYS A:165					
			TYR A:158					
			PHE A:149					
			MET A:199					
			GLY A:96					
			MET A:161					
			GLY A:14					
			ALA A:22					
A3c	-7.7	SERA :94	HIS A:93		ILE A:19	ILE A:16	LYS	0.0
		ALA A:22	GLY A:14				A:165	
		ILE A:21	THR A:196					
		SER A:20	ILE A:194					
		META:147	PHE A:149					
			GLY A:192					
			TYR A:158					
			ASP A:148					
			PRO A:193					
			GLY A:96					
			MET A:161					
			MET A:147					
101			ILE A:95	W.F. A. A.		DD C		
A3d	-6.7	SER A:94	LYS A:165	ILE A:21	TYR	PRO		0.0
			ASP A:148		A:158	A:193		
			SER A:20			PHE		
			THR A:196			A:149		
			SER A:19			MET		
			ILE A:194			A:147		
A 2 .	(7		MET A:199		MET			0.0
A3e	-6.7	SER A:94	GLY A:14		MET	ILE A:21		0.0
			SER A:20		A:147			
			THR A:196 SER A:19					
			ILE A:194					
			PRO A:193					
			PHE A:149					
			GLY A:192 ALA A:191					
			ALA A:191 ASP A:148					
		L	ASI A.140		I			

			ILE A:95					
D1a	-6.9	ILE A : 21	THR A : 196			ILE A:16		0.0
B1a	-0.9	ILE A : 21 ALA A :22				ILE A:10		0.0
			MET A :147					
		GLY A :14	LYS A : 165					
		SER A : 20	MET A :161					
			GLY A : 96					
			PHE A : 41					
			ILE A: 95					
	0 -		SER A : 94					
B1c	-8.5	SER A : 94	GLY A: 14			ILE A:21	LYS A:	0.0
			ALA A: 22				165	
			SER A : 20					
			THR A: 196					
			ILE A: 194					
			PHE A : 149					
			MET A :161					
			GLY A: 96					
			MET A :147					
			ILE A : 16					
			ILE A: 95					
B1d	-7.0		ASP A : 148	ILE A:21	PRO A:	PHE A :		 0.0
			MET A:147		193	149		
			SER A : 94					
			SER A : 20					
			ILE A : 194					
			TYR A : 158					
B1e	-6.7	SER A : 94	ILE A: 21			PHE A :		0.0
			ALA A : 191			149		
			GLY A : 192					
			ASP A : 148					
			PRO A :193					
			TYR A: 158					
			MET A:161					
			LYS A : 165					
			GLY A : 96					
			MET A :147					
B2a	-7.8	GLYA:192	SER A : 19			ILE A:21		0.0
		SER A: 94	ASP A : 148					
			PHE A : 149					
			MET A :147					
			MET A :161					
			GLY A : 96					
			LYS A : 165					
			GLY A : 14					
			ALA A : 22					
			ALA A : 22 SER A : 20					
B2b	-7.6		SER A : 20 SER A : 94		ILE A:16	MET A:		 0.0
D20	-7.0		SER A : 94 SER A : 20		ILE A:10	MET A: 147		0.0
			ALA A: 22			PRO A :		
			GLY A: 14			193		
			GLY A: 96					
			THR A: 196					
			MET A:199					
			ILE A: 194					
			TYR A : 158					
			PHE A: 149					

			ASP A : 148					
			LYS A: 165					
B2c	-9.2	ILE A: 16	ILE A: 95			ILE A:16		0.0
D2C	-9.2	ALAA:198	SER A : 20			ALA A		0.0
		ILE A: 21	ALA A : 22			:198		
		ILL A. 21	MET A:147			ILE A:21		
			THR A : 196			ILL A.21		
			ILE A : 194					
B2d	-8.2	ILE A: 21	ALA A: 22		ILE A:21	PHE A:		0.0
D2u	-0.2	ILL A. 21	SER A : 16		ILL A.21	149 A.		0.0
			SER A : 10			PRO A		
			THR A : 196			:193		
			ILE A : 194			.175		
			TYR A : 158					
			GLY A : 192					
			MET A :161					
			MET A :147					
			LYS A : 165					
			GLY A : 96					
B2e	-7.8	SER A : 94	SER A : 20		ILE A:21	TYR A:	MET A :	0.0
520	7.0	SERTITI	THR A : 196		PRO A	158	147	0.0
			ILE A : 194		:193	MET A :	1.7	
			PHE A : 149			199		
			GLY A : 192					
			ALA A : 191					
			ASP A : 148					
C1a	-7.0	SER A: 20	ALA A: 191	ILE A:21		MET A :		0.0
		GLYA:192	ASP A : 148			147		
		ILE A :194	LYS A : 165					
			THR A :196					
			PRO A :193					
C1b	-7.0	SER A : 94	ILE A: 16		ILE A:21	PROA:		0.0
			GLY A : 14			193		
			SER A : 20					
			SER A : 19					
			THR A : 196					
			ILE A :194					
			MET A :199					
			PHE A : 149					
			ASP A : 148					
			LYS A : 165					
~			ILE A : 95					
C1c	-8.4	PRO A:193	SER A : 19			ALA A :	MET A :	0.0
		ILE A: 21	THR A: 196			191	147	
		ILE A :194	SER A : 20					
			ILE A : 16					
			GLY A : 14					
			PHE A : 149					
			GLY A : 192					
			ASP A : 148					
			TYR A : 158					
C14	7.0	CLVA-102	LYS A : 165	HE 4-01		ПЕ А-21		0.0
C1d	-7.0	GLYA:192	ALA A : 191	ILE A:21	MET A	ILE A:21		0.0
		ILE A :194	PHE A : 149		:147			
			ASP A : 148					

			* * * * * * * * *				
			LYS A : 165				
			SER A : 20				
			THR A : 196				
			ILE A : 16				
			GLY A : 14				
Cle	-6.5	SER A : 94	ILE A : 16	ILE A:21	MET A :		0.0
			SER A : 20		147		
			THR A :196				
			SER A : 19				
			ILE A : 194				
			PHE A : 149				
			PRO A :193				
			GLY A : 192				
			ASP A : 148				
			ALA A : 191				
Bed	-8.6	TYRA:158	TYR A:158	ILE A:16	PROA:		0.0
aqui		ILE A:21	ILE A:21	ILE A:95	193		
line		GLY A:14	SER A:20	PHEA:4			
		ILE A:16	TYR A:196	1			
		GLY A:96	GLY A:96				
		SER A:94	HIS A:93				
		META:147	MET A:161				
			LYS A:165				
			SER A:94				
			MET A:147				
			PHE A:149				

DOCKING

The scoring function for the docking run is the binding energy, E _{bind} between the ligands and the protein. In general, the trend for the computed E _{bind} values did not correlate with the trend of the experimentally determined IC_{50} and Ki values obtained from previous studies. To explain the experimental observation, in depth analyses of the binding interactions was performed [14].

Molecular interaction studies were performed by Autodock vina with PyRx using bioactive compounds. The interaction of the natural compound with the target protein is important in the drug development process [15]. This program selected the best docked based on rootmean square distance (RMSD). The energy values of the 30 compounds were found within the range of -4.2 to -9.2Kcal.mol⁻¹. By docking of 30 compounds with 1P44 protein, three derivatives shows highest binding affinity ranging from -8.5 to -9.2 Kcal.mol⁻¹. One compound showed lowest binding affinity at -4.9 Kcal.mol⁻¹and remaining derivatives showed moderate activity. Out of 30 derivatives the receptor ligand interaction of 30 derivatives with name of aminoacids interacts with the ligands were given in table 3.

By comparing the Autodock results of 30 derivatives with both the tools B2c shows highest binding affinity when compared to the standard Bedaquiline. B2c having binding affinity -9.2 kcal.mol⁻¹. The residues interacted with the ligand B2c are ILE A: 16, ALA A:198, ILE A: 21 by conventional H-bond, ILE A: 95, SER A : 20, ALA A : 22, MET A:147, THR A : 196, ILE A : 194 by wander Vaal forces and ILE A: 16, ALA A :198, ILE A: 21 by Pi-alkyl bonds underlining the competitive inhibitory characteristics of compounds.

CONCLUSION

Tuberculosis remains a major cause of death worldwide. The rise and spread of drug resistance and

synergestic challenges and threatening interaction with the HIV epidemic are posing difficult challenges and threatening global efforts at tuberculosis control. In this study, docking of 30 quinazoline derivatives was carried out and three compounds namely A1c, A2c and B2c exhibited minimum energy values with highest binding affinity. The energy values obtained were -9.2, -9.1 and -9.2 kcal/mol respectively in Autodock vina with PyRx when compared with standard Bedaquiline with binding affinity -8.6Kcal/mol. We concluded that among these derivatives mostly the compounds containing either halogen-group or electron donating and electron withdrawing groups showed higher potential against the specific bacterium. So it should shows maximum antitubercular activity.

REFERENCES

- 1. WHO. Weekly Epidemiological Record, 23rd Jan 2004, 4.
- 2. WHO. Global Tuberculosis Report 2018.
- 3. WHO. Fact Sheet No.104, March 2016.
- 4. Maxine A, Papadakis, Stephen J, Mcphee. *Current Medicinal Diagnosis and Treatment*. Lange publications, 24th ed., 2004.
- 5. Alagarsamy V, Parthiban P. Synthesis and antibacterial activity of some novel 1-(4-oxo-3-butyl-3h-quinazolin-2-yl)-4-(substituted) thiosemicarbazides. *Rasayan Journal of Chemistry*, 4(4), 2011, 736-743.
- 6. Bibek P, Subhasis B. Quinazolines: An Illustrated Review. J. Adv. Pharm. Edu. & Res., 3(3), 2013, 136-151.
- 7. Li H, Wang JP, Yang F, et al. Design, synthesis and biological activity evaluation of 2-mercapto-4(3H) quinazolinone derivatives as a novel inhibitor of protein tyrosine phosphatase 1B. *Heterocycles*, 85, 2012, 1897–1911.
- 8. Chiou WF, Liao JF, Chen CF. Comparative study on the vasodilatory effects of three quinazoline alkaloids isolated from *Evodiarutaecarpa. J Nat Prod.*, 59, 1996, 374–378.
- 9. Goodford PJ. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. *J Med Chem*, 28, 1985, 849–857 12.
- 10. Foloppe N, Hubbard R. Towards predictive ligand design with free-energy based computational methods. *Curr. Med. Chem*, 13 (29), 2006, 3583–608.
- 11. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv Drug Del Rev*, 46, 2001, 3-26.
- 12. Parida P, Yadav R N S. Comparative docking study of M1 protein (influenza virus) to check drug efficacy. *Int J Pharm Pharm Sci.*, 4(3), 2012, 243-246.
- 13. Kumari B, Chetia D. In-silicon docking studies of selected glycoside bearing tetrazole ring in the treatment of hyperglycemia showing inhibitory activity on SGLT. *Int J Pharm PharmSci*, 5(2), 2013, 633-638.
- 14. Rufaidah O, Rozana O, Aida B, Nagasundara RR, Noorsaadah AM, Rohana Y, Saiful AK. Molecular Docking Studies of Selected Medicinal Drugs as Dengue Virus-2 Protease Inhibitors. *SainsMalaysiana*, 46(10), 2017, 1865–1875.
- 15. Mahendran R, Annie AT, Jeyabaskar S, Agnal VP. Molecular Modeling and Designing of Inhibitors against DevR (P9WMF8) Protein of *Mycobacterium tuberculosis. Int. J. Pharm. Sci. Rev. Res*, 35(1), 2015, 120-125.
- 16. Anita PW, Galih SP, Luthfi AM, Mellany IS, Tutuk B. Design and Molecular Docking Studies of Quinazoline Derivatives as Antiproliferation. *JurnalFarmasi Dan IlmuKefarmasian Indonesia*, 3(2), 201, 44-48.

Attribution-NonCommercial-NoDerivatives 4.0 International